Chinese Textual Entailment Recognition Enhanced with Word Embedding
نویسندگان
چکیده
Textual entailment has been proposed as a unifying generic framework for modeling language variability and semantic inference in different Natural Language Processing (NLP) tasks. By evaluating on NTCIR-11 RITE3 Simplified Chinese subtask data set, this paper firstly demonstrates and compares the performance of Chinese textual entailment recognition models that combine different lexical, syntactic, and semantic features. Then a word embedding based lexical entailment module is added to enhance classification ability of our system further. The experimental results show that the word embedding for lexical semantic relation reasoning is effective and efficient in Chinese textual entailment.
منابع مشابه
Combining Multiple Lexical Resources for Chinese Textual Entailment Recognition
Identifying Textual Entailment is the task of finding the relationship between the given hypothesis and text fragments. Developing a high-performance text paraphrasing system usually requires rich external knowledge such as syntactic parsing, thesaurus which is limited in Chinese since the Chinese word segmentation problem should be resolve first. By following last year, in this year, we contin...
متن کاملChinese Textual Entailment Recognition Based on Syntactic Tree Clipping
Textual entailment has been proposed as a unifying generic framework for modeling language variability and semantic inference in different Natural Language Processing (NLP) tasks. This paper presents a novel statistical method for recognizing Chinese textual entailment in which lexical, syntactic with semantic matching features are combined together. In order to solve the problems of syntactic ...
متن کاملMCU at NTCIR: A Resources Limited Chinese Textual Entailment Recognition System
Recognizing inference in text is the task of finding the textual entailment relation between the given hypothesis and text fragments. Developing a high-performance text paraphrasing system usually requires rich external knowledge such as syntactic parsing, thesaurus which is limited in Chinese since the Chinese word segmentation problem should be resolve first. In this paper, we go different li...
متن کاملSecond-Order Word Embeddings from Nearest Neighbor Topological Features
We introduce second-order vector representations of words, induced from nearest neighborhood topological features in pre-trained contextual word embeddings. We then analyze the effects of using second-order embeddings as input features in two deep natural language processing models, for named entity recognition and recognizing textual entailment, as well as a linear model for paraphrase recogni...
متن کاملCYUT Chinese Textual Entailment Recognition System for NTCIR-10 RITE-2
ABSTRACT Textual Entailment (TE) is a critical issue in natural language processing (NLP). In this paper we report our approach to the Chinese textual entailment and the system result on NTCIR-10 RITE-2 both simplified and traditional Chinese dataset. Our approach is based on more observation on training data and finding more types of linguistic features. The approach is a complement to the tra...
متن کامل